

Microsoft Excel VBA Page 1

Microsoft Excel VBA

TABLE OF CONTENTS

Chapter 1: Introduction

• What is VBA?

• Why need to do programming for MS-Excel

• What can we do with Excel VBA? (Few interesting examples)

• Using the development Integrated Development Environment.

• The project explorer - Introduction to the VBA project concept

and project components

• The property Window

• The IDE main menu

• Switching between Excel normal interface and IDE interface.

• Help system

Chapter 2: Automation via Macros
• Why do we need automation in MS-Excel?

• What is macro?

• Recording macros

• How to trigger macros from Excel normal interface?

• How to trigger macros from VBA IDE?

Chapter 3: Using Instructions
• The immediate window

• What is instruction?

• Evaluation instructions

• Command Instructions

• Dealing with Excel VBA objects and their properties

Chapter 4: Linking VBA with Excel
• Single cell reference methods

• Range reference methods

• Inter-worksheets reference
• Inter-workbook reference

Chapter 5: The instructions building block
• The Procedure Concept

• Procedures (Subroutines)

• Procedures (Functions)

• Procedures (Event Handlers)

• Pre-mature terminations with Exit keyword

• Grouping instructions using with statement

Microsoft Excel VBA Page 2

Chapter 6: Modules

• Why is module needed?

• Code Module

• User Form in brief

• Class module in brief

• Worksheet module in brief
• Workbook module in brief

• Procedures scoping

• Dealing with ambiguities

Chapter 7: When you make mistake…
• Type of errors

• Dealing with compilation errors

• Dealing with runtime errors

• Dealing with logical errors

• The debugger and debugging process

Chapter 8: The Variables
• Why are variables needed?

• Basic Data Types

• Variable declaration and shorthand
• Variable scoping and life cycle

• Variable initialization

• Option Explicit directive

Chapter 9: Useful VBA Native Functions

• MsgBox function

• InputBox function

• Number functions

• String functions

• Date/Time functions
• Format function

• Data Type Validation

Chapter 10: Other Useful Basic VBA Entities

• Comments

• Keywords

• Identifiers

• Constants

• Selection keyword

• Application object
• ActiveSheet object

• Sheets collection

• Workbooks collection

Microsoft Excel VBA Page 3

Chapter 11: The Parameter

• What is parameter?

• Optional parameters and techniques to handle default values

• Arbitrary argument support using ParamArray declaration

• Parameter passing mechanisms: ByVal vs. ByRef

• Named arguments

Chapter 12: Operators

• What is operator?

• Arithmetic operators

• Comparison Operators

• Logical Operators

• Special Operators

Chapter 13: Branching Constructs

• Unconditional Branching with GoTo statement

• Unconditional Branching with GoSub statement
• If..Then..Else Statement

• Select Case Statement

Chapter 14: Iteration Constructs

• Unconditional Loop with GoTo statement

• Using For Loop

• Using For Each statement

• Pre-test looping

• Post-Test looping

• Pre-mature termination using Exit keyword

Microsoft Excel VBA Page 4

Chapter 1: Introduction

What is VBA?

Microsoft® Visual Basic for Applications is a hosted language and

part of the Visual Basic® family of development tools. Although

VBA can be thought of as sitting below the retail version of VB and

above VBScript in the VB hierarchy, VBA is an essential element of

the retail version of VB, providing many language elements used in

VB. When hosted in VB, VBA provides language support and an

interface for forms, controls, objects, modules, and data-access

technologies. When hosted in other applications such as Excel or

Word, VBA, using a technology called Automation, provides the

means of interacting with and accessing the host application’s

object model, as well as the object models of other applications and

components.

Until the launch of VBA 5.0 in early 1997, the language had no

development environment; very much like VBScript today, VBA was

simply a language interpreter. VBA 5.0 marked the start of an
exciting new chapter for VBA; it now has its own integrated

development and debugging environment running within the

process space of the host application.

VBA itself becomes more object-oriented with each release, but the

latest release (Version 6.0) adds relatively few functions and

keywords to the VBA language. Instead, extra functionality has

been incorporated into VB6 using new object models, and again it’s

the VBA language that allows you to integrate these object models

into your application.

Why do I need to do programming for MS-Excel?

To customize complex applications such as Excel from Microsoft,

VBA allows the developer to provide solutions that take advantage

of sophisticated components that have been tried and tested. VBA is

a glue language: a language that interfaces with the various objects
that make up an application via the host application’s object model.

VBA is how applications can become extensible, and it’s ActiveX (or

Object Linking and Embedding automation) that provides the

interface between VBA and its host application. It’s this support for

OLE automation that makes VBA an outstanding tool for rapidly

developing robust Windows applications.

Microsoft Excel VBA Page 5

Few interesting examples

Example 1:
Given a term in a cell, you
are required to form an

abbreviation that based on

the uppercase letters of each

word in the term. How can

you do this with excel formula?

Example 2:
Prime number is an integer number that can be fully divided by 1

and itself. Given a set of positive integer numbers, can you create

Excel formula to determine a given cell is a prime number?

Example 3:
How to automate the proper formatting to range of cells in MS Excel

with the macro?

Example 4:
How to auto generate random numbers and highlight all the prime

numbers under a selected range?

Example 5:
How to automatically convert text entered in a cell to uppercase

upon leaving the cell?

Microsoft Excel VBA Page 6

Basically, there are 3 types of MS Excel users as listed below:

Based on the few examples above, you should realize that many of

the problems (even simple ones) cannot be solved until you become

a developer. This is the reason why you need to learn VBA.

Computer programming has become much easier than before. Of

course, to be a great programmer the journey is long, but at least

with simple programming you might be able to solve some simple

problems where even the power user not able to solve.

Programming means developing instructions that the computer

automatically carries out.

Using the development IDE

Developers need to depend on tools to develop a piece of product.

Software developers likewise use many software tools in the

development process. Modern development depends on tools that
normally integrated as one under a single environment. This is the

concept of Integrated Development Environment.

VBA is a powerful programming language that is embedded in every

Microsoft Office product under a “hidden world”. Whether you are

using Word, Excel or PowerPoint, you are only ever a few mouse

clicks (or keystrokes) away from starting to write your own

programs under the IDE called Visual Basic Editor.

Excel User

End User Power User Developer

Microsoft Excel VBA Page 7

You can set up the IDE to support the way you work. Some people

like to have all the main tool windows open all the time. Others like

to just have one or two open. Note though once you have them

docked like above you quickly learn not to change it as it is so hard

to re-dock them the same way.

VBA Environment

Unfortunately, the default environment settings are not geared

towards high quality development, they are set to make it easy for

beginners to get productive quickly.

These are our preferred settings for

professional quality development

(Tools->Options)

The default is to have those top 2 reversed.

You always get Auto Syntax Check (line goes

red), removing the tick stops the disruptive

modal error message boxes from constantly

popping up every time you move off a line to

copy something:

If the advice were a bit more helpful it might be worthwhile, but

even beginners would struggle to get any value out of the above

example. And it isn't going to get better as VBA is the end of line.

Advice: Turn off Auto Syntax Check.

Require Variable Declaration puts an 'Option Explicit' at the top of

each new code resource you open (module, class, form etc) (note it

is not retrospective, hence the need to set it ASAP). Not using
option explicit is just sloppy and is sure to lead too hard to spot

errors in any significant coding.

if you want to use a variable called x (you may be able to think of a

more meaningful name) Option Explicit forces you to declare it first.

If without Option Explicit, VB will implicitly declare the variable as a

variant the first time you use it, if you later mistype the variable

name VB will create another new variable, rather than warn you

'Variable not defined'. This default feature is degerous. It will easily

cause Logical Error in our program. This type of error is the most

defficult to fix.

Another bizarre default setting is the way the IDE does not show

one of the most important toolbars as standard. Luckily you can

right click in the menu area and show the Edit toolbar.

Microsoft Excel VBA Page 8

The 2 very useful commands here are the ones with blue lines; the

first one comments out a line, the one with the blue arrow

uncomments it.

Note: These settings will be reflected in other Office applications.

Getting to the Visual Basic Editor

Whichever Microsoft Office application you happen to be using, you

can be sure that embedded within it is another application

component called theVBE. This is the special component that you

use to write your VBA code. There are various menu or ribbon

options that will take you to the VBE, depending on which

application and which version of Office you are using, but you can
always get to the VBE with a keyboard shortcut. To do this, hold

down the ALT key on the keyboard, and then press F11 .

This is how the VBE
should look the very first
time you open it.

The two highlighted
windows are:

1. The Project Explorer
2. The Properties

Window
3. Code Editor
4. Main Menu
5. Toolbar

1

2

3

4

5

Microsoft Excel VBA Page 9

The VBE is similar for different Office applications you are in when

you open it. You will see slightly different things in the Project

Explorer and Properties window depending on which application you

are using - the diagram above is using Excel 2007. Don’t worry, the

IDE for Excel 2003 to 2018 looks the similar.

If you can't see the two windows that we've highlighted in the
image above, you can go to the View menu at the top of the VBE to

display them.

You can click the options shown here to show
the two relevant windows or use the keyboard
shortcuts that are listed next to the options in
the menu.

Alternatively, you can press Ctrl + R to turn on

the Project Explorer window, and F4 to turn on

Properties Window

Microsoft Excel VBA Page 10

The Project Explorer - Introduction to the VB project
concept and project components

A project is the name for the collection of VBA objects that are part

of the file you are working on. A project is created automatically

when you open a new Office file (such as an Excel workbook, Word

document, or PowerPoint presentation), and you can only have one

project associated with one file.

Working with Projects

The only useful thing you can really do with a project at this point is

to rename it. To do this:

1. Click on the project in Project Explorer.

2. Type in a new name for the project in

the Properties window.

A project name can't contain spaces and

various other punctuation characters - it's

best to stick to text and numbers.

Although you can only have one VBA project for each Office file, you

might also see other projects listed when you go into the

VBE. These extra projects include things like the Excel Personal

Macro Workbook, the Word Normal template, Excel Add-Ins,

and the Project Global template.

1

2

Microsoft Excel VBA Page 11

The property Window

We can view the Excel workbook

consisting of a set of objects. These

objects have a set of aspects called

Property. Each of these properties holds

a value that determines the object state.

For example, the Visible property of

each worksheet object has three
possible values, namely xlSheetVisible,

xlSheetHidden, and xlSheetVeryHidden.

Both property values xlSheetHidden and xlSheetVeryHidden will

cause the worksheet diappear. But you can use normal Excel

interface to unhide the worksheet with property value

xlSheetHidden,

But not for worksheet with Visible property value

xlSheetVeryHidden.

Microsoft Excel VBA Page 12

The IDE main menu

Below is the IDE main menu:

This main menu has many useful options to help us to deal with

VBA development. To trigger these options, we can use mosue click

or many of them can react to Hot Key or Shortcut Key.

We will explore most of these options soon.

Switching between Excel normal interface and IDE
interface

We can trigger VBA IDE interface from normal interface by using

the following ways:

1. Use Edit from macro dialog box

2. Pressing Alt + F11 key

3. Use Developer tab (enable it first), press the Visual Basic

button.

Both normal Excel interface and IDE interface are referring to same

workbook(s). We can use dual screen mode to perform

development more productively. If there is only one screen in used,

we can use Alt + Tab window key to switch around different

interface windows.

To move from VBA IDE back to normal Excel interface, we also can

press this button:

Microsoft Excel VBA Page 13

Help System

Under the VBA IDE,

we can press F1

key or select from

the main menu to

lauch the help

system.

Depending on the installation, the help might point the web by

using browser, or we can choose to use offline version.

Help also available from the editor by highlight keyword then press

F1 .

Microsoft Excel VBA Page 14

Chapter 2: Automation via Macros

Why do we need automation in MS-Excel?

Many Excel users use Excel to perform their daily tasks. Some of

these tasks are time consuming and if do it manually might cause

mistakes. The solution applies macros. The user can record the task

into macro and play back to perform the task.

Therefore, using macos we can gain two main advantages:

1. Save time

2. Eliminate manual mistakes

What is macro?

Basically, the macro is a VBA subroutine stored in the excel module.

The macro can be created in two ways:

1. Recording

2. Hand coding

We can view the macro from VBA IDE.

Recording macros

To record macro, switch to the View ribbon tab, the select the

macro botton:

 Under the drop down, select Record Macro…

Microsoft Excel VBA Page 15

The Record Macro dialog box appears:

The next step is to key in the

macro name. The default name

is macro*, where * is a running

number based on the times

macro is recorded since the
workbook is opened. We can

change the name by using VBA

naming convension (will discuss

further in other section)

We can decide the shortcut key

later. Macro also can be

assigned to other open

workbooks.

Press OK button to start. From now on, most of the action’s user

perform will be recorded.

After the task is completed, select

the Macros button from View ribbon
tab, click on the Stop Recording

option.

To view the recorded macro:

Switch to the View ribbon tab, the select the macro botton again,

then select View Macros option, Macro dialog box appears:

Select the macro to view from the listbox, then press Edit button.

The macro will be shown at the IDE editor.

Microsoft Excel VBA Page 16

How to trigger macros from Excel normal interface?

There are few ways we can trigger/run the macro from Excel normal

interface:

1. From the Macro Dialog Box

2. Use shortcut key. Firstly, we must assign shortcut key either

during macro creation or assign later by using Options…

button.

Take note that normally Ctrl+<letter> reserved for Excel itself,
therefore we can use Ctrl+Alt+<letter> instead.

Microsoft Excel VBA Page 17

3. Assign the macro to Form Controls, such as button. This

required us to turn on the Developer tab from excel interface.

For Excel 2003, we use Visual Basic Toolbar.

4. For Excel 2010 onward, we can easily attach macros to ribbon

tab too. Sorry, Excel 2007 is hard to do this.

How to trigger macros from VBA IDE?

To activate the macros under VBA IDE, we can

1. Call the macro from Immediate window (Discuss later)

2. Move the editing cursor the subroutine declaration, then

a. Press the Run button, or

b. Press F5

3. Call the macro from other procedures

Editing Cursor

Microsoft Excel VBA Page 18

Chapter 3: Using Instructions

The computer program consists of a series of organized instructions.

These instructions normally are coded by human programmers or

generated by software tools.

Macro recorder is the Excel component that observes Excel user

actions then translates these actions into sequence of computer

instructors.

Besides being generated by macro recorder, macros also possibily

coded by human developers. Techinically, macros are just a subset

of VBA programming. In fact, there are many other aspects of VBA
programming that are not about macros.

For beginners, to learn VBA programming one of the best

approaches is to start with learning instructions.

VBA IDE provides a special window called Immediate Window.

This is the ideal component to test and learn instruction by

instruction.

The Immediate Window

To start the immediate Window, under IDE we can either

1. Press Ctrl + G

2. Select main menu option View,

then select Immediate Window

A blank window will appear

Microsoft Excel VBA Page 19

What is instruction?

Computers are designed to accept instructions. Based on these

instructions, the computer will perform tasks as instructed. By

organizing a series of these instructions, will form so called

Computer Program. These instructions must follow special

“Grammer” so that computer can understand what the instructions

about. Technically this grammer is called Computer Language

Syntax.

Today we have many types of programming language, VBA is a

special programming language where we can instruct Excel to

perform actions.

Immediate window is designed to take instruction line by line. To

start learning VBA language with immediate window, we need to

understand there are two type of instructions that we can use under

immediate window:

1. Evaluation Instruction

2. Command

Evaluation instructions

This type of instruction will cause Excel to evaluate the instructions

and return value at the line after each instruction. This type of

instruction must start with “?” mark. For example,

Command Instructions

Unlike evaluation instructions, command instructions do not need to

start with “?” mark. It is for instructing Excel to perform some tasks.

For example, the following instruction is to set the cell A1 of current

active worksheet to value 123:

Microsoft Excel VBA Page 20

Dealing with Excel VBA objects and their properties

Excel VBA provides abstractions of programming objects. Such as

Application, Workbooks, Worksheets (or Sheets), and many others.

All these objects have many properties and operations. For

example, we can press

a “.” after the

Application name, the

Intellisense will list all
the operations and

properties that belong

to this object.

Some of these object properties refer to another object. For

example,

Lab Exercise:

In this lab exercise, you will learn how to use Immediate Window to:

1) Find out current date and time

2) Change Worksheet name
3) Check the number of worksheets in the workbook

4) Use help system

Duration: 15 Minutes

Instructions:

In the Immediate Window, run the following instructions

1) Find out current date and time

2) Change the worksheet name

3) Check the number of worksheets in the workbook

4) ? UCase(“Hello”)

Highlight UCase and press F1

Microsoft Excel VBA Page 21

Chapter 4: Linking VBA with Excel

VBA is a programming language for MS Office applications. But

when programming Excel with VBA, it is important to know various

specific methods to refer entities of Excel from VBA instructions.

This Chapter will cover the following:

• Single cell reference methods

• Range reference methods

• Inter-worksheets reference

• Inter-workbook reference

Single cell reference methods

Below are the methods referring to cell B3 of current active

worksheet,

1. [B3] – Short form of Evaluate(“B3”)

2. Range(“B3”)

3. Cells(3,2) or Cells(2,”B”)

Method-1 is simple, but the object type returned by Evaluate

function only can be determined during program runtime, therefore

is not adequate for new learner.

Method-2 uses Range object to refer the cell. Intellisence will help

programmers during coding.

Method-3 suitable for accessing cell in 2-Dimensional grid.

Range reference methods

Range is a more complex entity. It can used to refer to single cell

and multi cells. For example:

• [B3:E7] or Range(“B3:E7”) [B:E] or Range(“B:E”)

• [B:B] or Range(“B:B”)

• [3:7] or Range(“3:7”)
• [3:3] or Range(“3:3”)

• [A2:C3,5:6,F:G,J10] or Range(“A2:C3,5:6,F:G,J10”)

• Range(Cells(2,3),Cells(6,5))

• Range(B3:E7).Cells(3,2)

• Range(B3:E7).Cells(3,10)

Microsoft Excel VBA Page 22

Inter-worksheets reference

To refer to single cell or multi cells range from non-active

worksheets, we must prefix the reference with the either

1. Worksheets (or Sheets) object

o Sheets(2).Range(“A1”)

Cell A1 of second worksheet in the current workbook

o Sheets(“Sheet1”).Range(“A1”)

Cell A1 of worksheet with tab name “Sheet1”

2. Worksheet Programming name

o Sheet1.Range(“A1”)

Cell A1 of worksheet with programming name “Sheet1”

Every worksheet has two names, one is tab name, and the other is

programming name.

To change the tab name, we can use normal interface or IDE,

whereas programming name only can be changed from IDE using

property window.

Tab names can have space, but programming names must follow

standards VBA naming convernsion.

It is advisable to use programming in VBA programming due to the

following reasons:
1. Shorter in coding

2. Intellisence helps

3. End users changing tab name will not break the references.

Because worksheet programming names can not be changed when

program runtime, in this situation we can use tab name.

Inter-workbook reference
To refer to entity of other open workbook, we can prefix the

reference with Workbooks(filename or number) object followed

by “.”. Example:

Workbooks(“Test.xlsm”).Sheets(1).Cell(3,2) = 123

Tab Name

Programming Name

Microsoft Excel VBA Page 23

Lab Exercise:

In this lab exercise, you will learn how to use Immediate Window to

refer entities from Excel workbook.

Duration: 15 Minutes

Instructions

Perform the following tasks:

1) Create a new worksheet with tab name “Module 4”

2) Change its programming name to Mod4

3) Set this new worksheet as current active worksheet

4) In the Immediate Window,

a. Use evaluates format assign value 100 to cell A1

b. Use range format assign value 200 to cell A2

c. Set cell A3 “Formula” property with "=Sum(A1:A2)"

d. Set range D4 to G10 “Formula” property to

"=RandBetween(0,100)"

5) Switch to normal interface, check the result

6) Set another worksheet active and switch back to IDE

7) In the Immediate Window, find out the cell A3 value of
previously created worksheet by using

a. Worksheets or Sheets object

b. Worksheet programming name

Microsoft Excel VBA Page 24

Chapter 5: The instructions building block

Computer programs consist of a series of instructions. These

instructions can be up to thousands or even millions. If the

complexity of the program increases, it is hard to solve the problem

at one go in a single group of instructions. Just like in daily life

problem solving, we can break down complex problems to smaller

pieces, and further break them down to even smaller ones until

they are solvable or manageable. This technique is called Problem

Decompisition Technique. To support this technique,

programming languages normally provide functional buiding blocks.

Example 1:

Write a sample code that can ask for the user’s name, and then

show the greeting message?

Translate this in to steps:

1) Ask for the user’s name

2) Capture the user’s name into somewhere

3) Show the user’s name in the greeting message

The sample code that implements the steps:

Example 2:

Follow up from example 1 above. What should we do if the user

does not provide his/her name?

Basically, there are few things we need to clearify here:

1) How do we know that user does not provide the name?

2) What should we do if the name is not provided?

The sample code that implements the steps:

No Code
1
2
3

4
5
6

7

Option Explicit

Sub Greeting1()
 Dim name As String
 name = InputBox("What is your name?")
 MsgBox "Hi,"& name

End Sub

Microsoft Excel VBA Page 25

Example 3:

There are also other possible alternatives in the program logic. For

instance, the user can just provide the name with spaces.

How should we consider this situation?

The sample code that implements the steps:

Well train programmer, you need to take care of all the possible

situitions in the program logic.

Program logic is formal (unambiguous) translation of programmer’s

logical thinking into instructions that can be interpreted by

computers. As illustrations, let consider the following examples:

The program flow is determined by the statements/instructions in

used. These statements represent the logical thinking of the

programmer who creates the program.

No Code
1
2
3

4
5
6

7
8
9

10
11
12

13

Option Explicit

Sub Greeting2()
 Dim name As String
AskForName:
 name = InputBox("What is your name?")

 If name = "" Then
 MsgBox "Sorry, you did not tell me who you are?", vbExclamation
 GoTo AskForName

 Else
 MsgBox "Hi," & name
 End If

End Sub

No Code
1

2
3
4

5
6
7

8
9

10
11
12

13

Option Explicit

Sub Greeting3()
 Dim name As String

AskForName:
 name = Trim(InputBox("What is your name?"))
 If name = "" Then

 MsgBox "Sorry, you did not tell me who you are?", vbExclamation
 GoTo AskForName

 Else
 MsgBox "Hi," & name
 End If

End Sub

Microsoft Excel VBA Page 26

Normally before the programmer starts writing program statements,

some form of tools will be used to represent the design of the

solution. One of the common tools in use is called Flowchart.

The following scenario illustrates the use of Flowchart, and

translation into the program code.

Euclidean Algorithm

“The Euclidean algorithm (also called Euclid's algorithm) is an

algorithm to determine the Greatest Common Divisor of two

integers. Given two natural numbers a and b, check if b is zero. If

yes, then a is the GCD. If not, repeat the process using b and the

remainder after integer division of a and b.”

Anaother Alternative

No Code
1

2
3
4

5
6
7

8
9

10

11
12

Option Explicit

Function MyGCD (ByVal a As Long, ByVal b As Long) As Long
 While (a <> b)

 If a > b Then
 a = a - b
 Else

 b = b - a
 End If
 Wend

 MyGCD = a
End Funcion

No Code
1
2
3

4
5
6

7
8
9

10

Option Explicit
Function MyGCD (ByVal x As Long, ByVal y As Long) As Long
 Dim oldX As Long

 While (y<>0)
 oldX = x
 x = y

 y = oldX Mod y
 Wend
 MyGCD = x

End Funcion

Microsoft Excel VBA Page 27

When the number of steps in solving problem increases, we can

break the program statements to multiple building blocks.

For example, in arithmetic and number theory, the Least Common

Multiple (also called the lowest common multiple or smallest

common multiple) of two integers x and y, usually denoted by

LCM(x, y), is the smallest positive integer that is a multiple of both

x and y.

You are required to write a program to input 2 positive integer

values. The program should be able to find out the LCM of the

values.

Consider the 2 versions of code below
Alternative-1 Alternative-2

No Code
1
2
3

4
5

6
7
8

9
10
11

12
13
14

15
16
17

18
19
20

21
22

23

Option Explicit
Private Sub BadSub()
 Dim x As Long

 Dim y As Long
 Dim oldX As Long

 Dim x2 As Long
 Dim y2 As Long
 Dim gcd As Long

 Dim lcm As Long

 x =
CLng(InputBox("x="))
 y =

CLng(InputBox("y="))
 x2 = x
 y2 = y

 While y2<>0
 oldX = x2
 x2 = y2

 y2 = oldX Mod y2
 Wend
 gcd = x2

 lcm = (x * y) / gcd
 MsgBox "LCM=" & lcm

End Sub

 There are few observations:

1) Both alternatives of code can solve the

same problem

2) Alternative-1 is shorter and easier to
understand

3) Alternative-1 makes use of existing

function MyGCD (assume created

some way in the project).

4) Alternative-1 introduces new MyLCM()

function that canbe used by others

 No Code
 1

2
3

4
5

6
7
8

9
10
11

12
13
14

Option Explicit
Public Function MyLCM(ByVal x As_
 Long, ByVal y As Long) As Long
 MyLCM = (x * y) / MyGCD(x, y)
End Function

Private Sub GoodSub()

 Dim x As Long
 Dim y As Long

 x = CLng(InputBox("x="))
 y = CLng(InputBox("y="))

 MsgBox "LCM=" & MyLCM(x, y)
End Sub

Alterntive-1 places all the statements in a single building block. This
version of code although can solve the problem, but it is not a good

way of writing program. It violated a very important software

development principle called High Cohesion. Which means the

program entity is doing too many unrelated tasks.

Alternative-2 is higer cohesive, therefore it is more Reusable.

Microsoft Excel VBA Page 28

The Procedure Concept

Procedures are the code building blocks in the all the modules

(Module, User Form, Class Module, and Object model).

There are two types of procedures:

Procedures (Subroutines)

Procedure that has no return value. It consists of a group of

instructions to accomplish some tasks.

Procedure declaration must be in the following form:

[Public | Private] Sub <Subroutine Name>(<parameter list>)

 :

 <Instructions>

 :

End Sub

Macro in fact is a special form of subroutine (No parameter and

with Public accessibility).

Procedures (Functions)

It is a procedure that returns value. It can be used in expressions

and formulas.

[Public | Private] Function <Function Name>(<parameter list>)

 :

 <Instructions>

 :

End Function

Procedure

Function Subroutine

Macro

Event
Handler

Microsoft Excel VBA Page 29

Procedures (Event Handlers)

Event Handler is a special form of subroutine that is used

extensively in User Form and Document Object Model to support the

event driven model.

Pre-mature terminations with Exit keyword

When the End statement of procedure (End Sub or End Function)

reached, procedure considered end. But sometime, we want to

terminate the procedure before reached the End statement, we can

use Exit keyword. For subroutine use Exit Sub and for function

use Exit Function.

[Public | Private] Sub <Subroutine Name>(<parameter list>)

 :

 … Exit Sub

 :

End Sub

[Public | Private] Function <Subroutine Name>(<parameter list>)

 :

 … Exit Function

 :

End Function

Microsoft Excel VBA Page 30

Grouping instructions using with statement

Using With statement can reduce repetation in coding and

maintenance easier.

Before After
Sub Greeting3()
 [A1].Value = 123

 [A1].Font.Color = vbRed
 [A1].Font.Bold = True
 [A1].Interior.Color = vbYellow

End Sub

Sub Greeting3()
 With [A1]

 .Value = 123
 With .Font
 .Color = vbRed

 .Bold = True
 End With
 .Interior.Color = vbYellow

 End With
End Sub

Lab Exercise:

In this lab exercise, you will learn how to create procedures.

Duration: 60 Minutes
Instructions:

1) Switch to VBE (If you are not yet).

2) Create new code module

3) Rename it to “M05”.

4) Key in the following code in the module M05’s code editor

No Code
1
2

3
4
5

6
7
8

9
10
11

Option Explicit

'------------------------ Example 1 --
Function Abbreviation(s As String, Optional ByVal lower As Boolean=False) As String
 Dim sC As String

 Dim sItem
 For Each sItem In Split(Trim(s)," ")
 sC = Left(sItem,1)

 If (sC<>"") And (lower Or ((sC >= "A") And (sC <= "Z"))) Then
 Abbreviation = Abbreviation & sC
 End If

Microsoft Excel VBA Page 31

12

13
14

15
16
17

18
19
20

21
22
23

24
25
26

27
28
29

30
31

32
33
34

35
36
37

38
39
40

41
42
43

44
45
46

47
48
49

50
51

52

 Next

End Function

'------------------------ Example 2 --
Function IsPrime(ByVal n As Integer) As Boolean
 Dim x As Integer

 For x=2 To n
 If(n Mod x)=0 Then Exit For
 Next x

 IsPrime = (x=n)
End Function

'------------------------ Example 3 --
Sub ProperNames()
 Dim r As Range

 Dim c
 Set r = Range("PersonNames")
 For Each c In r.Cells

 c.Value=Excel.WorksheetFunction.Proper(c.Value)
 Next c

End Sub

'------------------------ Example 4 --

Sub GenerateRandamData()
 Dim c
 Selection.Interior.Pattern = xlNone

 For Each c In Selection.Cells
 c.Value = Round(Rnd() * 100, 0)
 Next c

End Sub

Sub HighlightPrimes()

 Dim r As Range
 Dim c
 Set r = Selection

 For Each c In r.Cells
 If IsNumeric(c) Then
 If IsPrime(c) Then c.Interior.Color = vbRed

 End If
 Next c

End Sub

Line# Notes

3 Single quote mark (‘) is for comment. Don’t miss it

 Number of hyphen (-) is not crucial; Just serve as seperators

7 There is a space character in between 2 double quote marks (“ “)

8 The second arguments of Left(sItem,1) is 1 (One) not ‘L’ or ‘I’

9 sC<>””. There isn’t anything in between s double quate marks

Microsoft Excel VBA Page 32

5) Prepare your worksheets for testing the code. Based on the

hints, fill in formula for the rest of the cells as needed.

6) From the project explorer, double click on the worksheet M05.

7) In the code editor, prepare the following code:

No Code
1
2
3

4
5
6

7
8

9

Option Explicit

Private Sub Worksheet_Change(ByVal Target As Range)

 If Not Application.Intersect(Target,[UserName]) Is Nothing Then
 Application.EnableEvents = False
 [UserName] = UCase([UserName])

 Application.EnableEvents = True
 End If

End Sub

--- End of Lab ---

=Abbreviation(C6) =Abbreviation(C2) =IF(IsPrime(E1),"Prime","")

=IF(IsPrime(M1),"Prime","")

Declare cell B18

as “UserName”

Select

range ”G10” .. ”L16”

before test run

“Random Data” and

“Highlight Primes”

Assign macro

“GenerateRandamData”

Name range

C11..C14 as

“PersonNames

”

Assign macro

“ProperNames”

Assign macro

“HighlightPrimes”

Create 10 total

worksheets with

name “M01”..”M10”

Microsoft Excel VBA Page 33

Chapter 6: Modules

There are 5 types of modules in Excel VBA.

Why is module needed?
Different modules in Excel VBA programming serve different

purposes. It provides basic unit of reuse, hiding complexity, and

allows object-based coding.

Code Module
These modules are normally used to declare reusable subroutines

(including macros), functions, variables, user types and constants

for the entire project. To add these modules, we can use project

explorer:

User Form in brief
User for provides alternative interface to Excel. It is commonly used

for creating custom dialog boxes. In user form we will use event-

based programming. To insert new User Form:

Module

Code
Module

User Form
Class

Module
Worksheet

Module
Workbook

Module

Microsoft Excel VBA Page 34

Class module in brief
The class module is a bit more technical for beginers. It is for

creating Abstract Data Types. To Insert class Class Module:

Worksheet module in brief
VBA allows individual worksheets to reply to different events. To

start the worksheet module, simply double click on the worksheet

object from project explorer. This will open the worksheet module.

Workbook module in brief
Unlike the worksheet level programming, for the Excel workbook,

there is only one workbook module. Simply double click on the

workbook object from project explorer will open the module editor.

Microsoft Excel VBA Page 35

Besides handling workbook level events, in this module we can

declare worksheet level event handlers shared by all worksheets.

Procedures scoping

Entity declared in the module with Private keywords only can be

referred by procedures in the same module only. Public keywords

are to allow entities declared referred all in the project. All the

procedure is public by default. Meaning

Sub MyTestSub1()
 MsgBox "MySub1"
End Sub

Same as

Public Sub MyTestSub1()
 MsgBox "MySub1"
End Sub

Macros must be public.

Dealing with ambiguities

Code module name normally is not required when referring to its
public entities. It is needed only when there exists ambiguity in

naming.

Microsoft Excel VBA Page 36

Lab Exercise

In this lab exercise, you will learn how to hide procedures by using

special keyworks in VBA.

Duration: 20 Minutes

Instructions:

1) Switch to VBE (If you are not yet).

2) Create code module6

3) Key in the following code in the module6’s code editor

4) Turn on the immediate window. Follow the demo steps of

instructor.

--- End of Lab ---

No Code
1
2

3
4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21
22

23

Option Explicit

Dim myVar1
Private myVar2
Public myVar3

Private Sub MyTestSub1()

 MsgBox "MySub1"
End Sub

Public Sub MyTestSub2()
 MsgBox "MySub2"

End Sub

Sub MyTestSub3()
 MsgBox "MySub3"
End Sub

Public Sub ShowVariable()

 MsgBox "myVar1=" & myVar1 & vbCrLf & _
 "myVar2=" & myVar2 & vbCrLf & _
 "myVar3=" & myVar3

End Sub

Microsoft Excel VBA Page 37

Chapter 7: When you make mistake…

Humans tend to make mistakes. No exception in programming. It is

common for programmers to make mistakes during the coding

process. We call these mistakes made Faults or Errors.

Type of errors

The types of errors in Excel VBA programming.

Dealing with compilation errors

Programming language is a communication tool for programmers to

give instructions to computers. The computer then will follow these

instructions to complete the tasks instructed.

To avoid any communication problem between humans and

computers, programming must be formal. This is to eliminate the

ambiguity that might cause by human in giving instructions.
Programmers must give instructions by obeying the language

“grammar” imposed. This grammar is called Syntax in the context

of programming. Failure in obeying the syntax where cause Syntax

Error.This error will be detected during compile time by the

compiler. Therefore, sometimes it is also called Compilation Error.

Error

Compilation

Syntax

Contextual

Runtime Logical

Microsoft Excel VBA Page 38

The statement causing error will be highlighted with red. Just

answer the dialog box, then fix the problem and continue coding.

Some of these errors will cause yellow color indicator. Press Reset

button and fix the program.

Referring to entity out of scope also can be detected during compile

time. But this is considered as Contextual Error.

When compilation occurs, normally the editor will stop us with

dialog box:

The compilation errors are the simplest among the rest. In fact, the

VBA editor can detect such errors while programmer writing their

code.

Dealing with runtime errors

After the program passed the compilation, the program was still not

error free. Some of the mistakes only can be encountered during

program running. When the program crashes due to a runtime

situation, it is called Runtime Errors. This type of errors can be

handled by using special error handling techniques (Only cover in

more advanced VBA course)

Microsoft Excel VBA Page 39

Dealing with logical errors

Even if the program passed the runtime test, it still could cause

error. Typically, the program produces wrong results. This type of

error is called Logical Errors.

This is the most difficult and normally most hampful error. Only can

be discovered with proper software testing process.

The debugger and debugging process

When we encounter runtime or logical errors, we can make use of

the IDE Debugging feature to find the root of problem.

The IDE includes a software component called Debugger to assists

the programmer to detect the runtime and logical errors. The

programmer can mark the line of code where the debugger will

pause and wait for the decision of the programmer during

debugging mode. This is called Breakpoints. When the debugger

pauses the program, programmer normally can start a Watch

Window. In the watch window, programmers can add expressions,

such as the variable names to observe the state values of the

variables. Then programmers can Step-Into or Step-Over the

code to study the code execution line by line until the problem is

found.

With this debugging process, programmer can normally find out the

following:
1) Invalid assignment of the value to variables

2) Unexpected execution flow of the program

Microsoft Excel VBA Page 40

Lab Exercise:

In this lab exercise, you will learn how to design program logic in

problem solving.

Duration: 45 Minutes

The Challenge:

“Given any positive integer number, find all the prime factors”

For example, the prime factors of 13195 are 5, 7, 13 and 29.

Meaning

13195 = 5 x 7 x 13 x 29.

Consider how we might use this process to find the prime factors of

140.

140 Is 140 evenly divisible by 2? Yes! Remember 2 and

divide 140 by 2.

2 x 70 Is 70 evenly divisible by 2? Yes! Remember 2 and
divide 70 by 2.

2 x 2 x 35 Is 35 evenly divisible by 2? No, how about 3? No. 4?

Nope. 5? Yes! Remember 5 and divide 35 by 5.

2 x 2 x 5 x 7 And we're done!

The Algorithm

(Flowchart):

Notes:

1) n Mod d means the

remainder after
integer division of n

by d.

2) n = n \ d means the n

will take the result of

integer devision of n

by b

Microsoft Excel VBA Page 41

Instructions:

1) Switch to VBE (If you are not yet).

2) Create code module7

3) Key in the following code in the module7’s code editor

Notes:

- Line 12: Use operator “\” for integer devision

- The label at line 9 and 22 must end with “:” symbol (colon).

It is for the purpose of Goto statements.

- The use of Goto statement is discouraged (More discussion

later). In this lab we use it for the purpose of matching the

flowchart logical flow.

4) Run the subroutine.

No Code
1

2
3
4

5
6
7

8
9

10

11
12
13

14
15

16
17
18

19
20
21

22
23
24

Option Explicit

Sub PrimeFactors()
 Dim n As Long

 Dim d As Long
 Dim s As String
 n = CLng(InputBox("number="))

 d = 2
Start:
 If (n Mod d)=0 Then

 s = s & vbCrLf & d
 n = n \ d
 GoTo Start

 Else
 If d >= n Then

 GoTo Finish
 Else
 d = d + 1

 GoTo Start
 End If
 End If

Finish:
 MsgBox s
End Sub

Microsoft Excel VBA Page 42

5) Key in the positive integer number when the dialog box

appears.

6) The answer is: 5,7,13,29

7) Intentionally change the code at line 15 to If d > n Then

8) Try to run the debugging process to find the problem.

--- End of Lab ---

Enter positive

number here

Then OK

to confirm

Microsoft Excel VBA Page 43

Chapter 8: The Variables

The state of the program is determined by the data value during

runtime.

Data typical stored under different segments of the runtime

memory:

Segment Type Example Characteristic
Data Segment 1) Public/Private variable

declared outside the

procedures

2) Static Variable

Longer life

Stack 1) Variable declare with

Dim in the procedure

2) Parameters

Shared. Will be

destroyed at the end
of procedure call.

Heap Dynamic Objects Shared. Managed.

Why are variables needed?

Variables are the name storage that holds runtime values of the

program. It has the following facets:

1) Name

2) Data Type

3) Visibility and Scope

4) Life Cycle

Variables can be declared inside and outside the procedures.

Basic Data Types

By providing type to data in the program means giving the following

information to the system:

1) The storage size needed by the data
2) Valid type of data

3) The value ranges the data can hold

4) Valid operations on data

All this information is important for the system to produce a more

effective system and detect any inconsistency caused by the

programmer.

Sample Declaration:

 Dim iVar As Integer

Microsoft Excel VBA Page 44

Variable declaration and shorthand

When declaration without mentioned type, by default means variant:

Dim V Same as Dim V As Variant

But here are few special shorthands

Dim V% Same as Dim V As Integer

Dim V$ Same as Dim V As String

Dim V# Same as Dim V As Double

Variable scoping and life cycle

Listed below are the keywords for declaration:

Microsoft Excel VBA Page 45

Microsoft Excel VBA Page 46

Variable initialization

All variables are declared with its type of default value. But

sometimes we want the variables with other initial values.

The following is not allowed in VBA:

 Dim V As Integer=10

However, we can use multiple statement format:

 Dim V As Integer : V=10

Option Explicit directive

VBA still inherit some legacy BASIC language characterics. It allows

auto variable declaration. This means the programmer has no need

to declare the variables to use them. When firsttime the variable is

first use by program, the variable will be declared automatically as

type variant.

This feature seems handy, but it come with some serious cost in

modern programming:

1) If the programmer typed wrongly the name, it is easily

causing logical error.

2) The use of variant type is costly

To avoid auto variable declaration, we can place statement Option

Explicit as the first line of any module. With this line of statement,

compiler with not perform the auto variable declaration for that

module.

It is always a good practice to start any module with this Option

Explicit statement.

Microsoft Excel VBA Page 47

Lab Exercise:

In this lab exercise, you will learn how to deal with various storage

classes and variable scoping via accessibility keywords in VBA.

Duration: 30 Minutes

Instructions:

1) Switch to VBE (If you are not yet).

2) Create code module8

3) Key in the following code in the module8’s code editor

No Code
1
2

3
4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30

Option Explicit

Public Sub TestOutOfRange()
 Dim iVar As Integer
 Dim lVar As Long

 iVar = 100000 'This will cause overflow!
 lVar = 100000 'This is fine
End Sub

Public Sub TestStatic()

 NormalSub
 NormalSub
 NormalSub

 SubWithStaticVar
 SubWithStaticVar

 SubWithStaticVar
 StaticSub
 StaticSub

 StaticSub
End Sub

Private Sub NormalSub()
 Dim n%

 n = n + 1
 Debug.Print "NormalSub" & vbTab & n
End Sub

Private Sub SubWithStaticVar()

 Static n%

 n = n + 1
 Debug.Print "SubWithStaticVar" & vbTab & n

Microsoft Excel VBA Page 48

4) Turn on the immediate window.

5) Execute Subroutine TestOutOfRange(). Discuss with instructor

your observation

6) Execute Subroutine TestStatic(). Discuss with instructor your

observation

7) Before you want to try again, you need to reset the

immediate window by right-click Reset.

--- End of Lab ---

31

32
33

34
35
36

37
38

End Sub

Static Sub StaticSub()

 Dim n%

 n = n + 1

 Debug.Print "StaticSub" & vbTab & n
End Sub

Microsoft Excel VBA Page 49

Chapter 9: Useful VBA Native Functions

Besides can borrow functions from Excel, VBA has various useful

native functions. Learning how to use these functions can make our

coding much simpler.

MsgBox function

It is one of the commonly used dialog boxes, waits for the user to

click a button, and returns an Integer indicating which button the

user clicked.

Syntax:
 MsgBox(prompt[, buttons] [, title] [, helpfile, context])

Parameter Description
prompt Required. String expression displayed as the message in the dialog

box. The maximum length of prompt is approximately 1024

characters, depending on the width of the characters used. If

prompt consists of more than one line, you can separate the lines

using a vbNewLine constant between each line.

buttons Optional. For type of buttons, icons, and default button

title Optional. If omitted, will shows application name

helpfile Optional. String expression that identifies the Help file to use to

provide context-sensitive Help for the dialog box. If helpfile is

provided, context must also be provided.

context Optional. Numeric expression that is the Help context number

assigned to the appropriate Help topic by the Help author. If

context is provided, helpfile must also be provided.

If we use MsgBox for acknowledgement, we normally ignore its

return value.

Microsoft Excel VBA Page 50

InputBox function

Displays a prompt in a dialog box, waits for the user to input text or

click a button, and returns a String containing the contents of the

text box. Syntax:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

Parameter Description
prompt Required. String expression displayed as the message in the dialog

box. The maximum length of prompt is approximately 1024
characters, depending on the width of the characters used. If
prompt consists of more than one line, you can separate the lines
using a vbNewLine constant between each line.

title Optional. If omitted, will shows application name

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text
box is displayed empty

xpos Optional. Numeric expression that specifies, in twips, the
horizontal distance of the left edge of the dialog box from the left
edge of the screen. If xpos is omitted, the dialog box is horizontally
centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical
distance of the upper edge of the dialog box from the top of the
screen. If ypos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to
provide context-sensitive Help for the dialog box. If helpfile is
provided, context must also be provided.

context Optional. Numeric expression that is the Help context number
assigned to the appropriate Help topic by the Help author. If
context is provided, helpfile must also be provided.

Microsoft Excel VBA Page 51

Number functions

Number functions deal with numbers in VBA programming.

Math Functions
Function Returns:

Abs(x) the absolute value of x
Atn(x) the trigonometric arctangent of x (in radians)
Cos(x) the trigonometric cosine of x (in radians)
Exp(x) exponential function ex
Fix(x) the integer portion of x
Int(x) The integer portion of x, except that if x is negative, it will return the next

smallest number.
For example, Int(-4.3) would return –5, not –4 as you might expect. To get
the integer portion of a number, the Fix function will always produce the
expected result.

Log(x) natural logarithm of x (base e)
Round(x, y) x rounded to y decimal places
Rnd a random number less than 1 but greater than or equal to zero
Sgn(x) -1 if x is negative, 0 if x is 0, 1 if x is positive
Sin(x) the trigonometric sine of x (in radians)
Sqr(x) the square root of x
Tan(x) the trigonometric tangent of x (in radians)

Financial Functions
To do this: Use one of these functions:

Calculate depreciation. DDB, SLN, SYD

Calculate future value. FV

Calculate interest rate. Rate

Calculate internal rate of return. IRR, MIRR

Calculate number of periods. NPer

Calculate payments. IPmt, Pmt, PPmt

Calculate present value. NPV, PV

Microsoft Excel VBA Page 52

String functions

Below are some common string functions:

Function Purpose
Len(string) Returns a Long containing the length of the specified string

Mid(string, start[, length]) Returns a substring containing a specified number of characters
from a string.

Left(string, length) Returns a substring containing a specified number of characters
from the beginning (left side) of a string.

Right(string, length) Returns a substring containing a specified number of characters
from the end (right side) of a string.

UCase(string) Converts all lowercase letters in a string to uppercase. Any
existing uppercase letters and non-alpha characters remain
unchanged.

LCase(string) Converts all uppercase letters in a string to lowercase. Any
existing lowercase letters and non-alpha characters remain
unchanged.

InStr([start,] string1, string2 [,
compare])

Returns a Long specifying the position of one string within
another. The search starts either at the first character position or
at the position specified by the start argument and proceeds
forward toward the end of the string (stopping when either
string2 is found or when the end of the string1 is reached).

InStrRev(string1, string2[,
start, [, compare]])

Returns a Long specifying the position of one string within
another. The search starts either at the last character position or
at the position specified by the start argument and proceeds
backward toward the beginning of the string (stopping when
either string2 is found or when the beginning of the string1 is
reached).

String(number, character) Returns a string containing a repeating character string of the
length specified.

Space(number) Returns a string containing the specified number of blank spaces.

Replace(expression, find,
replacewith[, start[, count[,
compare]]])

Returns a string in which a specified substring has been replaced
with another substring a specified number of times.

StrReverse(string) Returns a string in which the character order of a specified string
is reversed

LTrim(string) Removes leading blank spaces from a string.

RTrim(string) Removes trailing blank spaces from a string.

Trim(string) Removes both leading and trailing blank spaces from a string.

Asc(string) Returns an Integer representing the ASCII character code
corresponding to the first letter in a string.

Chr(charcode) Returns a string containing the character associated with the
specified character code.

Microsoft Excel VBA Page 53

Date/Time functions

Below are some common date/time functions:

Function Purpose
Date() Return current date

DateAdd(interval, number, date) Returns a Variant (Date) containing a date to which a
specified time interval has been added

DateDiff(interval, date1, date2[,
firstdayofweek[, firstweekofyear]])

Returns a Variant (Long) specifying the number of time
intervals between two specified dates

DatePart(interval, date
[,firstdayofweek[,
firstweekofyear]])

Returns a Variant (Integer) containing the specified part
of a given date.

DateSerial(year, month, day) Returns a Variant (Date) for a specified year, month, and
day.

DateValue(date) Returns a Variant (Date).

Day(date) Returns a Variant (Integer) specifying a whole number
between 1 and 31, inclusive, representing the day of the
month.

Hour(time) Returns a Variant (Integer) specifying a whole number
between 0 and 23, inclusive, representing the hour of
the day.

Minute(time) Returns a Variant (Integer) specifying a whole number
between 0 and 59, inclusive, representing the minute of
the hour.

Now() Return current date and time

Second(time) Returns a Variant (Integer) specifying a whole number
between 0 and 59, inclusive, representing the second of
the minute.

Time() Returns a Variant (Date) indicating the current system
time.

Year(date) Returns a Variant (Integer) containing a whole number
representing the year.

Format function

Returns a Variant (String) containing an expression formatted

according to instructions contained in a format expression. Syntax:

Format(expression[,format [,firstdayofweek [,firstweekofyear]]])

Parameter Description
expression Required. Any valid expression

format Optional. A valid named or user-defined format expression

firstdayofweek Optional. A constant that specifies the first day of the week

Firstweekofyear Optional. A constant that specifies the first week of the year

ypos Optional. Numeric expression that specifies, in twips, the vertical distance

of the upper edge of the dialog box from the top of the screen. If ypos is

omitted, the dialog box is vertically positioned approximately one-third of

Microsoft Excel VBA Page 54

the way down the screen.

Data Type Validation

Sometimes we need to check the actual type of data before further

action is taken on to the data. This is especially important if we are

using Variant type to hold the data. VBA provides few intrinsic

functions for data type validation:

Function Description
IsDate Returns a Boolean value indicating whether an expression can be converted to a

date. Useful for validating input.

IsNumeric Returns a Boolean value indicating whether an expression can be evaluated as a
number. Can be useful for validating input; but use with caution: if the
expression contains the letter "E" or "D", the input argument could be
interpreted as a number in scientific notation (thus returning True when you
would expect the function to return False).

IsNull Returns a Boolean value that indicates whether an expression contains no valid
data (Null). Usually used with database fields, although a Variant variable can
also contain Null (no other intrinsic VB datatype can store Null values).

IsMissing Returns a Boolean value indicating whether an optional Variant argument has
been passed to a procedure.

IsEmpty Returns a Boolean value indicating whether a Variant variable has been
initialized (i.e., if it has ever been assigned a value).

IsObject Returns a Boolean value indicating whether a Variant variable represents an
object.

IsError Returns a Boolean value indicating whether a Variant variable contains the
special value’s Error.

IsArray Returns a Boolean value indicating whether a variable is an array.

You can also use If TypeOf <ref. var> Is <Class> Then to check for the object type.

Microsoft Excel VBA Page 55

Lab Exercise:

In this lab exercise, you will learn how to use some of the string

manipulation functions.

Duration: 30 Minutes

Instructions:

1) Switch to VBE (If you are not yet).
2) Create code module9

3) Key in the following code in the module9’s code editor

--- End of Lab ---

No Code
1
2

3
4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21
22

23
24
25

Option Explicit

Sub TestString()
 Dim s As String

 s = "VBA Programming is Fun"

 Debug.Print "Using Len:"; Tab(25); Len(s)

 Debug.Print "Using Mid$:"; Tab(25); Mid$(s,3, 4)
 Debug.Print "Using Left$:"; Tab(25); Left$(s,3)
 Debug.Print "Using Right$:"; Tab(25); Right$(s, 2)

 Debug.Print "Using UCase$:"; Tab(25); UCase$(s)
 Debug.Print "Using LCase$:"; Tab(25); lCase$(s)
 Debug.Print "Using Instr:"; Tab(25); InStr(s,"a")

 Debug.Print "Using InstrRev:"; Tab(25); InStrRev(s,"a ")
 Debug.Print "Using LTrim$:"; Tab(25); LTrim$(s)
 Debug.Print "Using RTrim$:"; Tab(25); RTrim$(s)

 Debug.Print "Using Trim$:"; Tab(25); Trim$(s)
 Debug.Print "Using String$ & Space$:"; Tab(25); String$(3,"*") _
 & Space$(2) & Trim$(s) _

 & Space$(2) & String$(3, 42)
 Debug.Print "Using Replace$:"; Tab(25); Replace$(s,"a", "*")

 Debug.Print "Using StrReverse$:"; Tab(25); StrReverse$(s)
 Debug.Print "Using Asc:"; Tab(25); Asc(s)
End Sub

Microsoft Excel VBA Page 56

Chapter 10: Other Useful Basic VBA Entities

In this Chapter we will learn some of the essential elements of the

VBA programming language.

Comments

Comments can provide better readability of your code. But

comments will be ignored by the system.

VBA only supports single line comments. You can use “SingleQuote”

or Rem keyword for the comment. Under code editor, comments

normally appear in green color (Unless you changed the setting).

Today, Rem rarely in used due to two reasons:

1) More typing needed

2) Cannot use after statements

Keywords

Keywords, also called Reserved Words, are a set of terms used

by the language. You cannot use them as names for your

programming elements such as variables or procedures. The table

below shows some of the common keywords

Common Keywords
And As Boolean ByRef Byte ByVal Case Const

Currency Date Declare Dim Do Double Each Else

End Enum Eqv Error Exit For Function GoSub

GoTo If Imp In Integer Is Long Loop

Mod New Next Not Nothing Null Object Option

On Optional Or ParamArray Preserve Private Public ReDim

Resume Return Select Single Static Step String Sub

Then To Type Variant Wend While With Xor

Notes: There are more keywords in VBA but omitted here. You will know
them when you reach to more advance levels of VBA programming.

No Code
1

2
3
4

5

Option Explicit

'This is comment
Rem This is also comment

Microsoft Excel VBA Page 57

Identifiers

The concept of identifier is for reference to the programming

ellements, such as variables, subroutine, function, constant, label,

etc.

Declared Element Names

Every declared element has a name, also called an identifier, which

is what the code uses to refer to it.

Rules

An element name in VBA must observe the following rules:

• It must begin with an alphabetic character or an underscore (_).

• It must only contain alphabetic characters, decimal digits, and

underscores.

• It must contain at least one alphabetic character or decimal

digit if it begins with an underscore.

• It must not be more than 1023 characters long.

The length limit of 1023 characters also applies to the entire string

of a fully qualified name.

Name Length Guidelines

As a practical matter, your name should be as short as possible

while still clearly identifying the nature of the element. This

improves the readability of your code and reduces line length and

source-file size.

On the other hand, your name should not be so short that it does

not adequately describe what the element represents and how your

code uses it. This is important for the readability of your code. If

somebody else is trying to understand it, or if you yourself are

looking at it a long time after you wrote it, suitable element names

can save a considerable amount of time.

Microsoft Excel VBA Page 58

Constants

Systems declared constants (vb*),

such as:

The VBA constants can be used for all MS Office applications.

Excel Constants

In Excel VBA we need to know another set of constants only

applicable under Excel VBA. These constants start with xl*. For

example:

Range(“A1”).Interior.Pattern = xlNone

Where the xlNone here is to set the cell A1 background to “No Fill”

Consider the sample code below:

No Code
1
2
3

4
5
6

7
8

9
10
11

12
13
14

15
16
17

18
19
20

21

Option Explicit

Private Const PI As Double = 3.14159
Function Area(ByVal radius As Double) As Double
 Area = PI * radius * radius
End Function

Function Circumference(ByVal radius As Double) As Double

 Circumference = 2 * PI * radius
End Function

Private Sub GetRadius()

 Dim r As Double
 r = CDbl(InputBox("The Circle Radius"))
 MsgBox "Details:" & vbCrLf & _

 vbTab & "Radius=" & r & vbCrLf & _
 vbTab & "Area=" & Area(r) & vbCrLf & _
 vbTab & "Circumferene=" & Circumference(r), _

 vbOKOnly + vbInformation, _
 "Circle Information"
End Sub

User defined constant

 Sample system constants

Microsoft Excel VBA Page 59

The elements in Red color and Blue Color in the about sample code

are keywords.

Basically, there are 2 main advantages of using constants.

1) The program statements are more Readable.

2) The constants can be used in many places in the program. In

case we need to change the value represented by the
constant, just change at the place we declare it. This is better

than hardcode the value at many places that will cause

maintenance more difficult.

Defining constants

Constants are value declared but cannot be modified. Constants can

be declared by programmer by using keyword Const. For example:

Const PI As Double = 3.14159

Selection keyword

Selection is the range object representing current range selection
in a worksheet. Since it is a range, we can apply any range

operations and refer to the range attributes.

Application object

In the context of Excel VBA, Application object is the abstraction of

the entire Microsoft Excel application.

The Application object contains:

• Application-wide settings and options.

• Methods that return top-level objects, such as ActiveCell,

ActiveSheet, and so on.

For example, the following statement creates a Microsoft Excel

workbook object in another application and then opens a workbook

in Microsoft Excel.

Set xl = CreateObject("Excel.Sheet")

xl.Application.Workbooks.Open "newbook.xls"

Microsoft Excel VBA Page 60

ActiveSheet object

Returns an object that represents the active sheet (the sheet on top)

in the active workbook or in the specified window or workbook.

Returns Nothing if no sheet is active.

The following example displays the name of the active sheet.

MsgBox "The name of the active sheet is " & ActiveSheet.Name

Sheets collection

A collection of all the sheets in the specified or active workbook.

The Sheets collection can contain Chart or Worksheet objects.

The Sheets collection is useful when you want to return sheets of

any type. If you need to work with sheets of only one type, see the

object topic for that sheet type.

Following example use the Add method to create a new sheet and

add it to the collection. The following example adds two chart

sheets to the active workbook, placing them after sheet two in the

workbook.

Sheets.Add type:=xlChart, count:=2, after:=Sheets(2)

Workbooks collection

A collection of all the Workbook objects that are currently open in

the Microsoft Excel application.

Following example use the Open method to open a file. This creates

a new workbook for the opened file. The following example opens

the file Array.xls as a read-only workbook.

Workbooks.Open FileName:= "Array.xls", ReadOnly:=True

Microsoft Excel VBA Page 61

Lab Exercise:

In this lab exercise, you will learn how to use and declare constants.

Besides, you will learn how to use immediate window and use it to

call sub routines and functions.

Duration: 20 Minutes

Instructions:
4) Switch to VBE (If you are not yet).

5) Create code module10

6) Key in the following code in the module10’s code editor

7) Start the immediate window by pressing Ctrl + G

8) In the immediate window try to key in each of the following

and then press enter key to execute:

? Area(10)

GetRadius

--- End of Lab ---

No Code
1
2

3
4

5
6
7

8
9

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24

25

Option Explicit

Private Const PI As Double = 3.14159

Private Function Area(ByVal radius As Double) As Double

 Area = PI * radius * radius
End Function

Private Function Circumference(ByVal radius As Double) As Double
 Circumference = 2 * PI * radius

End Function

Public Sub GetRadius()
 Dim r As Double

 r = CDbl(InputBox("The Circle Radius"))
 MsgBox "Details:" & vbCrLf & _
 vbTab & "Radius=" & r & vbCrLf & _

 vbTab & "Area=" & Area(r) & vbCrLf & _
 vbTab & "Circumferene=" & Circumference(r), _
 vbOKOnly + vbInformation, _

 "Circle Information"
End Sub

'This is comment
Rem This is also comment

Microsoft Excel VBA Page 62

Chapter 11: The Parameter

What is parameter?

Instead of creating many similar versions of procedures, we can

pass arguments to procedure to handle different states that require

similar processing logic. Therefore, many VBA procedures have

Parameters to accept these argument values.

Optional parameters and techniques to handle
default values

In some situations, we can omit arguments when calling the

procedures. Therefore, the parameter supposes to accept the

argument value must be declared as Optional. If no argument

value is provided during the procedure call, these parameters must

be initialized with Default Value.

There are three techniques to handle the default value for optional

parameters:

1) Data Type default

2) Absolute default

3) Conditional default

If we declared any parameter as optional, all others parameter to

the right must be optional as well. This will explain why all the

optional parameters appear at the end of the procedures.

Arbitrary argument support using ParamArray
declaration

Perhaps you are aware that in Excel there are functions that can

take variable numbers or arguments. Typical examples are Sum,

Average, etc.

In VBA we can declare procedures that can accept variable number

of arguments by using keyword ParamArray.

Parameter passing mechanisms: ByVal Vs. ByRef

When you define a procedure, you have two choices regarding how
arguments are passed to it: by reference or by value. When a

variable is passed to a procedure by reference, VBA passes the

variable's address in memory to the procedure, which can modify it

directly. When execution returns to the calling procedure, the

variable contains the modified value.

Microsoft Excel VBA Page 63

When an argument is passed by value, VBA passes a copy of the

variable to the procedure. Then, the procedure modifies the copy,

and the original value of the variable remains intact; when

execution returns to the calling procedure, the variable contains the

same value that it had before being passed.

By default, VBA passes arguments by reference. To pass an
argument by value, precede the argument with the ByVal keyword

in the procedure definition, as shown here:

 Function SomeProc(strText As String, ByVal lngX As Long) As Boolean

If you want to denote explicitly that an argument is passed by

reference, you can preface the argument with the ByRef keyword in

the argument list.

Passing by reference can be useful if you understand how it works.
For example, you must pass arrays by reference; you will get a

syntax error if you try to pass an array by value. Because arrays

are passed by reference, you can pass an array to another

procedure to be modified, and then you can continue working with

the modified array in the calling procedure.

Named arguments

Consider the following procedure call:
 fv = MyFV(1000, 0.05F, 10)

We can rewrite it as:
 fv = MyFV(pv:=1000, rate:=0.05F, terms:=10)

Where pv, rate, and terms are the parameters for function

MyFV.

This format is called Named Arguments.

With this Named Arguments, we can rewrite the above statement as:

fv = MyFV(rate:=0.05F, terms:=10, pv:=1000)

Normally named arguments are commonly used for procedures with

many parameters.

There two main advantages by using Named Arguments:

1) Better code self descriptive. Less explicit documentation

needed to explain the code

2) Arguments sequence independence. This is very useful when

we use named arguments together with optional parameters.

Microsoft Excel VBA Page 64

Lab Exercise:

In this lab exercise, you will learn how to write a macro to find the

total of employee salary without knowing fixed data address,

column sequence, and record numbers. You will learn the concept of

Region in Excel.

Duration: 45 Minutes

Instructions:

1) Create a new worksheet and change its tab name to “M11”.

2) Prepare the contents as below:

3) Switch to VBE (If you are not yet).

4) Create code module11

5) Key in the following code in the module11’s code editor

6) Run the macro FindTotalSalary. Study how it works

7) Try to run the macro again after each of these attemps:

No Code
1

2
3
4

5
6
7

8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23

Option Explicit

Sub FindTotalSalary()
 Dim rng As Range

 Dim r%, c%, sum As Currency

 Set rng = Sheets("M11").Cells.Find(What:="EID", LookAt:=xlWhole, MatchCase:=True)

 If rng Is Nothing Then
 MsgBox "Data not found!"

 Else
 Set rng = rng.CurrentRegion
 For c = 1 To rng.Columns.Count

 If rng.Cells(1, c) = "Salary" Then
 For r = 2 To rng.Rows.Count
 sum = sum + CCur(rng.Cells(r, c))

 Next r
 MsgBox "The total salary is " & Format(sum, "$#,###.00")
 Exit Sub

 End If
 Next c
 MsgBox "Salary column not found!"

 End If
End Sub

Microsoft Excel VBA Page 65

a. Try to move the data around in the worksheet.

b. Insert a new column before the Salary column.

c. Insert new column after the Salary column.

d. Add new record.

8) Explain why the macro fail if

a. Change the column title EID to EIDs.
b. Change the column title Salary to Salaries.

c. Add some data to the cell just on top of the cell with

column title Salary.

--- End of Lab ---

Microsoft Excel VBA Page 66

Chapter 12: Operators

What is operator?

Operators is for related operands in the expressions. There are five

groups of operators in VBA: Arithmetic, String, Comparison, Logical,

and Special. We will look at each group of operators in turn.

Arithmetic operators

Arithmetic operators are generally for numerical related operations.

Operator Precedence

Precedence refers to what operations will be done first when a

computation involves more than one operation. The rules in VB are

the same as those in algebra. You may find it helpful to think of the

phrase "Please Excuse My Dear Aunt Sally" for Parentheses /

Exponentiation / Multiplication and Division (same precedence left-

to-right) / Addition and Subtraction (same precedence left-to-right).

Bear in mind that in VB, the precedence of "integer division" and

"modulo" are below multiplication and "real" division, but above

addition and subtraction. Try to use parentheses to make code

more readbale instead of depending on operator precedence, in

case whoever read your code might not familiar with the

precedence.

Microsoft Excel VBA Page 67

Comparison Operators

To compare two values, these operators are in used.

Logical Operators

The purpose of these operators is to deal with complex/composite

conidition. These operators are also used for bitwise operations.

String Operator

String concatenation is the only supporting operator in VBA. With

this operator, we can join string and other data types to for another

string.

Special Operators

There also special operator that deal with Objects.

Microsoft Excel VBA Page 68

Lab Exercise:

In this lab, you are required to solve a given problem in VBA. The

solution of this problem involves numbers of operators.

Duration: 45 Minutes

The Challenge:

Write a VBA program that allows a user to input the loan amount,
interest rate, and number of years to pay off the loan. The program

should display the monthly payment, total amount that will be paid

out over the life of the loan, and the cost of credit.

The monthly payment is computed as follows:

You will need to convert the annual interest rate to the monthly rate

by dividing the annual rate by 12 and then by 100 (or by 1200).

Convert the time in years to the number of monthly payments by

multiplying by 12.

The total amount paid is the monthly payment times the number of

years times 12. The cost of credit is the total amount paid minus

the loan amount.

For example, if the user finances $14,000 to be paid out over four
years at an interest rate of 7%, I would enter the following values:

Loan Amount: 14000

Interest Rate: 7

Number of Years: 4

The program should then come up with the following results:

Monthly Payment: $335.25

Total to be paid: $16,091.88

Cost of Credit: $2,091.88

Instructions:

1) Switch to VBE (If you are not yet).

2) Create code module12

3) Write the code in module12’s code editor and test it using

immediate window

--- End of Lab ---

Microsoft Excel VBA Page 69

Chapter 13: Branching Constructs

The flow of execution of the program can be determined by the

state of execution of the program. In this Chapter we will look at

the special decision-making constructs provided by VBA.

Unconditional Branching with GoTo statement

The GoTo statement can be used to branch to statements within a

Sub or Function procedure. We have all heard lectures on the "evils"

of using GoTo statements. In general, use of modern programming

virtually eliminates the need to use GoTos. You'll find that the only

time that the use of GoTo is required is when setting up error-

handling code (error-handling is covered in more advanced course

later).

 The rules for using GoTo are as follows:

• The destination of a GoTo statement must be a line label or

line number that resides within the same Sub or Function

procedure as the statement that issues the GoTo (i.e., you

cannot "go to" a line in a Sub or Function other than the one

you are currently in).

• The name of the line label follows the same rules as that for

naming a variable. The line label must begin in the first

column of the line and must be followed by a colon (:).

• If a line number is used, it must begin in the first column of

the line.

Unconditional Branching with GoSub statement

In earlier versions of BASIC, the only way you could make your

programs modular was to break your program up into "subroutines"
and use GoSub to execute that subroutine and return to the calling

statement. GoSub was included in VB to maintain backward

compatibility; it is not a particularly "bad" construct to use, but its

use is generally discouraged – it is recommended that Sub and

Function procedures be used instead.

 The rules for using GoSub are as follows:

• The destination of a GoSub statement must be a line label or

line number that resides within the same Sub or Function

procedure as the statement that issues the GoSub (i.e., you

cannot "GoSub" to a line in a Sub or Function other than the

one you are currently in). In effect, using GoSub lets you

have "subs within a sub" (with the exception that you cannot
pass parameters to a "GoSubbed" routine).

• If a line label is used, the name of that line label must follow

the same rules as that for naming a variable. The line label

Microsoft Excel VBA Page 70

must begin in the first column of the line and must be

followed by a colon (:).

• If a line number is used, it must begin in the first column of

the line.

Once the destination of the GoSub is reached, a Return statement

will return control to the statement after the one that issued the

GoSub.

If..Then..Else Statement

The selection control structure allows one set of statements to be

executed if a condition is true and another set of actions to be

executed if a condition is false. A selection structure, also called an

"If-Then-Else" structure, is flowcharted as follows:

If-Then-Else

After either the true set of actions or the false set of actions is

taken, program control resumes with the next statement (the

statement that would be placed below the connector in the

flowchart above).

 In VBA, the following form is preferred for implementing the If-

Then-Else structure (this is the "block", or "multi-line" form of the If

statement):

 If <conditional expression> Then
 <one or more statements to be executed if condition is true>
 Else
 <one or more statements to be executed if condition is false>
 End If

If the conditional expression is true, the statements between the

keywords Then and Else will be executed (and the statements

between the keywords Else and End If will be bypassed). If the

Condition
True False

Statements to be

executed when

condition is false

Statements to be

executed when

condition is true

Microsoft Excel VBA Page 71

conditional expression is false, the statements between the

keywords Else and End If will be executed (and the statements

between the keywords Then and Else will be bypassed). In any

case, program control will resume with the statement following End

If.

The If-Then-Else statement is a "two-alternative" decision - actions
are taken on both the "If" side and the "Else" side. Sometimes,

however, you may only want to perform an action or set of actions

if a condition is true but do nothing special if the condition is false.

This could be flowcharted as follows:

If-Then

Extended Block If Statement (If/Then/ElseIf)

Format:

 If <conditional expression 1> Then
 <one or more statements to be executed if condition 1 is true>
 ElseIf <conditional expression 2> Then
 <one or more statements to be executed if condition 2 is true>
 . . .
 ElseIf <conditional expression n> Then
 <one or more statements to be executed if condition n is true>
 Else
 <one or more statements to be executed if none of the above conditions is true>
 End If

Note that one or more ElseIf clauses are "sandwiched" between the

first "If" clause and the last "Else" clause. Note also the keyword

ElseIf is one word. Using the format above, this extended If

structure is to be understood as follows: if "conditional expression

1" is true, perform the statements associated with that condition,

then exit to the statement following the End If; if "conditional

expression 1" is false, then check "conditional expression 2" - if

"conditional expression 2" is true, perform the statements

Condition

True

False

Statements to be

executed when

condition is true

Microsoft Excel VBA Page 72

associated with that condition, then exit to the statement following

the End If, and so on. VB will execute the statements associated

with the first true conditional expression it finds and then exit to the

statement following the End If. The final Else statement is often

useful to trap errors that may occur when unexpected conditions

arise, none of which matches the conditions in the previous If or

ElseIf clauses.

Note that the use of "ElseIf" saves the coding of multiple "End If"

statements in a nested If structure.

The IIf (Immediate If) Function

For cases where you want to assign a particular variable one value

if a condition true and another value if a condition is false, you can

use the IIf function. The syntax is:
IIf(<conditional expression>, <true part>, <false part>)

The statement
strMessage = IIf(sngAvgGrade >= 60, "You passed!", "You failed!")

is equivalent to
If sngAvgGrade >= 60 Then
 strMessage = "You passed!"
Else
 strMessage = "You failed!"
End If

Select Case Statement

When the situation arises where you need to choose between more

than two alternatives, an extended form of the selection structure,

called the case structure, must be used. A flowcharted example

follows:

Select-Case

Condition

Statements

for 1st Case

Statements

for 2nd Case

Statements

for Case Else

Statements

for 3rd Case

Statements

for nth Case

Microsoft Excel VBA Page 73

VBA's Select Case is a powerful statement with several options. The format is:

 Select Case <test expression>
 Case <expression list 1>
 <statement list 1>
 Case <expression list 2>
 <statement list 2>
 …
 [Case Else <statement list n>]
 End Select

The format above is to be understood as follows: The Select Case

statement specifies an expression to be tested. Each subsequent

Case clause specifies an expression(s) that the test expression will

be compared to. The first Case clause that contains an expression

that matches the test expression will have its associated actions
executed, then program control will branch to the statement

following End Select. The final Case Else clause is often useful to

trap errors that may occur when an unexpected value of the test

expression is present, none of which matches the expression list

specified in any of the above Case clauses.

Microsoft Excel VBA Page 74

Lab Exercise:

In this lab exercise, you will apply conditional and conditional

branching in VBA.

Duration: 60 Minutes

Instructions:

1) Switch to VBE (If you are not yet).
2) Create code module13

3) Key in the following code in the module13’s code editor

No Code
1
2

3
4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21
22

23
24
25

26
27
28

29
30
31

32
33

Option Explicit

Sub testGoTo()
 Dim lngFactorial%, intInputNbr%, intLoopCtr%

 intInputNbr = Val(InputBox("Enter a number:", "GoTo Demo"))
 lngFactorial = 1
 intLoopCtr = 1

Loop_Start:
 If intLoopCtr>intInputNbr Then GoTo 10

 lngFactorial = lngFactorial * intLoopCtr
 intLoopCtr = intLoopCtr + 1

 GoTo Loop_Start

10' End of loop
 Debug.Print CStr(intInputNbr); "! = "; lngFactorial
End Sub

Sub testGoSub()

 GoSub SubroutineA
 GoSub SubroutineB

 GoSub 1000
 Exit Sub
SubroutineA:

 Debug.Print "Hey kids, I'm in Subroutine A"
 Return
SubroutineB:

 Debug.Print "Hey kids, I'm in Subroutine B"
 Return
1000

 Debug.Print "Hey kids, I'm in Subroutine 1000"
 Return

Microsoft Excel VBA Page 75

34

35
36

37
38
39

40
41
42

43
44
45

46
47
48

49
50
51

52
53

54
55
56

57
58
59

60
61
62

63
64
65

66
67
68

69
70
71

72
73

74
75
76

77
78
79

80
81
82

83
84
85

86
87
88

89
90

91
92

End Sub

Function MyABS%(ByVal v%)

 'This function demonstrates the use of IF-THEN statement and negation operator
 If v <0 Then v = -v
 MyABS = v

End Function

Function MyMin#(ByVal x#, ByVal y#)
 'Function to demonstrate subsitution of IIf function for IF-THEN-ELSE statement
 If (x > y) Then

 MyMin = y
 Else
 MyMin = x

 End If
 'MyMin = IIf(x > y, y, x)
End Function

Sub TestOddEven()

 Dim sInput$
 Dim iInput%

 sInput = InputBox("The Integer Value", "Test Odd/Even")

 iInput = CInt(sInput)
 If IsEven(iInput) Then

 MsgBox "The number is Even"
 Else
 MsgBox "The number is Odd"

 End If
End Sub

Function CompareTo%(ByVal v1%, ByVal v2%)
 If (v1 > v2) Then

 CompareTo = 1
 Else
 If (v1 < v2) Then

 CompareTo = -1
 Else
 CompareTo = 0

 End If
 End If
End Function

Sub WhatToEat()

 'Subroutine shows nested IF statements
 Dim sDay$
 Dim sFood$

 sDay = uCase(Trim(InputBox("Day=", "Which day?")))
 If sDay = "MON" Then

 sFood = "Burger"
 Else
 If sDay = "WED" Then

 sFood = "Chicken"
 Else
 If sDay = "FRI" Then

 sFood = "Satay"
 Else
 sFood = "Nasi"

 End If
 End If

Microsoft Excel VBA Page 76

4) Test all the procedures and understand how each of them

works.

--- End of Lab ---

93

94
95

96
97
98

99
100
101

102
103
104

105
106
107

108
109
110

111
112

113
114
115

116
117
118

119
120
121

122
123
124

125
126
127

128
129
130

131
132

133
134
135

136
137
138

139
140
141

142
143
144

 End If

 MsgBox "You should eat " & sFood
End Sub

Sub WhatToEat2()

 'Subroutine shows using ElseIf to reduce code nesting
 Dim sDay$
 Dim sFood$

 sDay = uCase(Trim(InputBox("Day=", "Which day?")))
 If sDay = "MON" Then
 sFood = " Burger"

 ElseIf sDay = "WED" Then
 sFood = "Chicken"
 ElseIf sDay = "FRI" Then

 sFood = "Satay"
 Else
 sFood = "Nasi"

 End If
 MsgBox "You should eat " & sFood
End Sub

Sub WhatToEat3()

 'Subroutine shows a better alternative of WhatToEat() by using Select-Case
 Dim sDay$

 Dim sFood$
 sDay = uCase(Trim(InputBox("Day=", "Which day?")))
 Select Case sDay

 Case"MON": sFood = "Burger"
 Case"WED": sFood = "Chicken"
 Case"FRI": sFood = "Satay"

 Case"TUE", "THU", "SAT", "SUN": sFood = "Nasi"
 Case Else
 MsgBox "Invalid entry"

 Exit Sub
 End Select
 MsgBox "You should eat " & sFood

End Sub

Function TicketPrice(ByVal age%) As Currency
 'Function shows various form cases
 Select Case age

 Case Is <1, Is >128
 MsgBox "Age " & age & vbNewLine & "Is this human?", vbCritical, "Age error"
 Case 1, 2: TicketPrice = 0 'Infant

 Case 3 To 11: TicketPrice = 5 'Kid

 Case Is <= 18: TicketPrice = 6 'Teenager

 Case Is >= 80: TicketPrice = 2 'Eldery
 Case Is >55: TicketPrice = 4 'Senior citizen
 Case Else: TicketPrice = 10 'Normal Adult

 End Select

End Function

Microsoft Excel VBA Page 77

Chapter 14: Iteration Constructs

The repetition control structure is also known as the looping or

iteration control structure. Looping is the process of repeatedly

executing one or more steps of an algorithm or program; it is

essential in programming, as most programs perform repetitious

tasks.

Every loop consists of the following three parts:

The loop termination decision - determines when (under what

condition) the loop will be terminated (stopped). It is essential that

some provision in the program be made for the loop to stop;
otherwise, the computer would continue to execute the loop

indefinitely - a loop that doesn't stop is called an endless loop or

infinite loop; when a program gets stuck in an endless loop,

programmers say that the program is "looping".

The body of the loop - the step or steps of the algorithm that are

repeated within the loop. This may be only one action, or it may

include almost all the program statements. Important note: some

action must occur within the body of the loop that will affect the

loop termination decision at some point.

Transfer back to the beginning of the loop - returns control to the

top of the loop so that a new repetition (iteration) can begin.

Unconditional Loop with GoTo statement

As mentioned in the branching Chapter, the GoTo statement can be

used to branch to statements within a Sub or Function procedure.
But, if the label or number are before the GoTo statement, this will

cause the code execution branch backward. This will form an

unconditional loop.

Using For Loop

The For/Next loop uses a built-in counting procedure to repeat a

series of instructions a specific number of times.

The general format of the For/Next loop is as follows:

For <loop control variable> = <initial value> To <stop value> [Step increment value]
 <list of statements>
Next [loop control variable]

When the loop begins, the loop control variable (LCV) will be
initialized with the value of the initial value. Subsequently, a test

will be made to see if the LCV exceeds the stop value. If the LCV

Microsoft Excel VBA Page 78

exceeds the stop value, the loop will end, and control will pass to

whatever statement follows the Next statement.

If the LCV is less than or equal to the stop value, the body of the

loop will be executed, and the Next statement automatically

increments the LCV by the value specified after the keyword Step (if

the Step clause is omitted, the increment value is assumed to be 1).
The Next statement also causes a transfer of control back to the

For statement to begin another repetition of the loop. Note from

the general format that the LCV may optionally be specified after

the keyword Next, however, programming literature states that it is

more efficient to leave it off.

Other notes regarding the For/Next loop:

Scenarios Output
The Step value need not be 1. The statements

 For X = 1 To 10 Step 2
 Print X
 Next

1

3

5

7

9

The Step value can be negative, in which case the

loop executes until the LCV is less than the stop

value - therefore, the initial value should be

greater than the stop value. The statements

 For X = 3 To 1 Step -1
 Print X
 Next

3

2

1

Assuming that the Step value is positive (or the

default of 1 is used), if the stop value is less than

the initial value when the loop begins, the loop

will never execute. For example, the statements

in the body of this loop will never execute:

 For X = 1 To 5 Step -1
 <whatever>
 Next

Using For Each statement

Another very common situation is the need for a loop which

enumerates every element of a list.

The general format of the For Each loop is as follows:
For Each <iterating variable>In<list>
 <use the variant variable as the list item>
Next [<iterating variable>]

The list is commonly a Collection or Array but can be any other

object that implements an enumerator. Note that the iterating

variable has to be either a Variant, Object or Class that matches the

type of elements in the list.

Microsoft Excel VBA Page 79

Pre-Test Looping

The general format for a pre-test loop in VB/VBA is:
Do {While | Until} <condition>
 <list of statements>
Loop

The pre-test loop is implemented in VBA with a "Do" statement

followed by either the keyword "While" or "Until". "Do While"

means execute the statements in the body of the loop While a

certain condition is true. "Do Until" means execute the statements

in the body of the loop Until a certain condition is true. In other

words, doing something Until a condition is TRUE is the same as

doing something While a condition is FALSE. For example, Do While X

<= 10 is the same as Do Until X > 10.

With a pre-test loop the "loop termination decision" is tested at the

top of the loop, it is possible that the statements in the body of the

loop will never be executed.

Do While pre-test loop Do Until pre-test loop

The While/Wend Loop

The While/Wend loop is an older statement pair from previous

versions of BASIC and was included in VB for compatibility. The

format is:

While <condition>
 <list of statements>
Wend

There is no "Until" equivalent of "While/Wend".

Condition

True

Fals

e

Statements before

Loop begins

Statements

in the loop

body

Statements after

Loop finishes

Condition

False

True

Statements before

Loop begins

Statements

in the loop

body

Statements after

Loop finishes

Microsoft Excel VBA Page 80

Post-Test Looping

The general format for a post-test loop in VB is:

 Do
 <list of statements>
 Loop {While | Until} <condition>

With a post-test loop, the "loop termination decision" is tested at

the bottom of the loop, therefore the statements in the body of the

loop will always be executed at least once.

In VB, post-test loops are implemented with the Do/Loop

statements, however, the "While" and the "Until" conditions appear

after the keyword Loop, not Do. The "While" and the "Until"

versions of the post-test loop are flowcharted as below. The only

difference between the two is the placement of the "True" and

"False" paths extending from the decision diamond.

Loop While post-test loop Loop Until post-test loop

Pre-mature termination using Exit keyword

Occasionally, it may be necessary or more efficient to exit a loop

early (i.e., before the loop termination decision is reached) due to

some other condition that becomes true as the loop is processing.

For this situation the Exit Do or Exit For statement can be used.

Condition

False

True

Statements

before Loop

begins

Statements

in the loop

body

Statements after

Loop finishes

Condition

True

False

Statements

before Loop

begins

Statements

in the loop

body

Statements after

Loop finishes

Microsoft Excel VBA Page 81

Lab Exercise:

In this lab, you will learn how to perform various types of iteration

in VBA coding

Duration: 120 Minutes

Instructions:

1) Switch to VBE (If you are not yet).

2) Create code module14

3) Copy the following code from instructor into the module14’s

code editor

No Code
1
2

3
4
5

6
7
8

9
10
11

12
13
14

15
16
17

18
19

20
21
22

23
24
25

26
27
28

29

Option Explicit

Sub UnconditionalLoop()
 Dim n As Byte

Start:
 n = n + 1
 Debug.Print n

 GoTo Start
End Sub

Sub TestFor1()
 Dim i%

 For i = 1 To 10
 Debug.Print i
 Next i

 Debug.Print "After loop, i=" & i
End Sub

Sub TestFor2()
 Dim i%

 For i = 10 To 1 Step -1
 Debug.Print i
 Next i

 Debug.Print "After loop, i=" & i
End Sub

Sub TestFor3()

Microsoft Excel VBA Page 82

30

31
32

33
34
35

36
37
38

39
40
41

42
43
44

45
46
47

48
49

50
51
52

53
54
55

56
57
58

59
60
61

62
63
64

65
66
67

68
69

70
71
72

73
74
75

76
77
78

79
80
81

82
83
84

85
86

87

 Dim i%

 For i = 1 To 10

 Debug.Print i
 If (i = 5) Then Exit For
 Next i

 Debug.Print "After loop, i=" & i
End Sub

Function FactFor(ByVal x As Byte) As Long
 Dim i%
 FactFor = 1

 For i = 2 To x
 FactFor = FactFor * i
 Next i

End Function

Function FactPre1(ByVal x As Byte) As Long

 FactPre1 = 1
 Do While x > 1

 FactPre1 = FactPre1 * x
 x = x - 1
 Loop

End Function

Function FactPre2(ByVal x As Byte) As Long

 FactPre2 = 1
 While x > 1
 FactPre2 = FactPre2 * x

 x = x - 1
 Wend
End Function

Function FactPre3(ByVal x As Byte) As Long
 FactPre3 = 1

 Do Until x <= 1
 FactPre3 = FactPre3 * x
 x = x - 1

 Loop
End Function

Function FactPost1(ByVal x As Byte) As Long
 Dim n%

 FactPost1 = 1
 Do
 n = n + 1

 FactPost1 = FactPost1 * n
 Loop While (n < x)
End Function

Function FactPost2(ByVal x As Byte) As Long
 Dim n%

 FactPost2 = 1
 Do
 n = n + 1

 FactPost2 = FactPost2 * n
 Loop Until (n >= x)

End Function

Microsoft Excel VBA Page 83

4) Test all the subroutines (Not the functions) from immediate

window, and try to understand how they work

5) Prepare a new worksheet. Change the tab name to “M14” and

use it to all other factorial functions.

--- End of Lab ---

Microsoft Excel VBA Page 84

Happy Coding

